
UNIVERSITY OF CALIFORNIA
SANTA CRUZ

SCANBOX: A TUNABLE AND PORTABLE GPU PREFIX SCAN
IMPLEMENTATION IN VULKAN AND WEBGPU.

A thesis submitted in partial satisfaction of the
requirements for the degree of

Bachelor of Science

in

COMPUTER SCIENCE

by

James V. Contini

June 2025

Copyright © by

James V. Contini

2025

Table of Contents

List of Figures v

List of Tables vii

Abstract viii

Dedication x

Acknowledgments xi

1 Introduction 1
1.1 Contributions . 3

2 Background 5
2.1 Basic GPU Architecture . 5
2.2 GPU Programming Model . 7
2.3 GPU Programming Frameworks . 9
2.4 Prefix-scan . 10

3 Methodology 15
3.1 Chained Scan: A Device-wide GPU Scan Strategy 15
3.2 Chained Scan Variation: Sequential . 17
3.3 Chained Scan Variation: Decoupled Lookback 19
3.4 Chained Scan Variation: Parallelized Decoupled Lookback 20
3.5 Intra-block Scan: Approach and Implementations 22
3.6 More Tuning Parameters . 24
3.7 Why are we tuning? . 24
3.8 Tuning Approach: Execution Details . 25

4 Implementation 27
4.1 Toolchain and Frameworks . 27
4.2 Vulkan: Initial Issues . 28

iii

4.3 Vulkan: Framework and Toolchain Bugs . 30
4.4 Vulkan: Formal Verification . 35
4.5 WebGPU: Initial Issues . 36
4.6 Vulkan and WebGPU: Implementation Adaptations 37

5 Results and Discussion 44
5.1 Roadmap for Results and Discussion . 44
5.2 ScanBox: Initial Results . 44
5.3 ScanBox: Fully Tuned Performance Results 49
5.4 Performance Variability: The Need for Input-Specific Tuning 52
5.5 Leveraging Per-Input Tuning in Resource-Limited Settings 55
5.6 ICS for Multiple Devices . 66
5.7 Final Problem: Generate the Best Kernel for Multiple Devices 75

6 Future Work 79

7 Conclusion 81

Bibliography 82

iv

List of Figures

2.1 SIMD architecture. 6

2.2 GPU Thread Hierarchy. 7

2.3 Serial Scan. 12

2.4 Hillis and Steele scan algorithm. 13

2.5 Upsweep & downsweep phases of the Blelloch 1990 scan algorithm. 14

3.1 Pseudo-code for Chained Scan algorithm. 16

3.2 Sequential Chained Scan visualization. 18

3.3 OpenCL-like Sequential Decoupled Lookback pseudo-code. 21

3.4 Visualization of Parallelized Decoupled Lookback. 22

4.1 Minimized code example of the Nvidia Vulkan bug. 31

4.2 Minimized code example of the AMD Vulkan bug. 32

4.3 Efficient, single value approach. 38

4.4 Undefined and disallowed subgroup behaviour. 42

4.5 SIMD Raking is technically undefined in WGSL. 43

v

5.1 Intial Nvidia RTX 4070 prefix-sum plot (throughput in GB/s). 45

5.2 Nvidia RTX 4070 prefix-sum parametrized on Parallelized Decoupled Look-

back vs. Sequential Decoupled Lookback (throughput in GB/s). 47

5.3 AMD XT 7900 varying input data types (throughput in GB/s). 48

5.5 Nvidia RTX 4070 Vulkan vs. CUB. 51

5.6 Subset of AMD XT 7900’s throughput density distributions plots. 54

5.7 AMD XT 7900 best overall parameters vs. best single kernel that maximizes

the sum of the throughputs at every input size — Throughput in GB/s. 58

5.8 Nvidia RTX 4070 best overall parameters vs. best single kernel that maximizes

the sum of the throughputs (GB/s) at every input size. 59

5.12 Benchmarked on the Nvidia RTX 4070: The best RTX 4070 parameters vs. The

best XT 7900 parameters — Throughput in GB/s. 66

5.13 Plots the shared ICS for both devices (dotted line), using averaging, against de-

vice local ICSs on the AMD XT 7900 and the Nvidia RTX 4070 — Throughput

in GB/s . 67

5.14 Plots the shared ICS for both devices (dotted line), using max, against device

local ICSs on the AMD XT 7900 and the Nvidia RTX 4070 68

5.15 Same plot using averaging with variance penalty — Throughput in GB/s 69

5.19 Minimizing Distance to the 1.25 power — Throughput in GB/s. 75

5.20 Best kernel across AMD and Nvidia — Throughput in GB/s. 77

vi

List of Tables

3.1 Summary of tunable parameters in our prefix-scan framework. 25

4.1 Summary of device functionality at the beginning of development. 29

4.2 Summary of device functionality after adding the require full subgroups flag. . 29

4.3 Summary of device functionality after all aforementioned changes. 34

5.1 Percentage of memory bandwidth achieved compared to the device ceiling. . . 52

vii

Abstract

Scanbox: A tunable and portable GPU prefix scan implementation in Vulkan and

WebGPU.

by

James V. Contini

Prefix-scan is an important algorithmic primitive, it is useful for Radix Sort, Stream Com-

paction, linear recurrence, quicksort, sparse matrix-vector multiply, tridiagonal matrix solvers,

fluid simulation, and more. Since 2016, state-of-the-art GPU implementations of this primitive

are so efficient that they are memory-bound; that is, performance is limited by the rate at which

data can be transferred to and from the GPU. Extensive research on high performance prefix-

scan exists, but it has primarily focused on CUDA implementations. In 2024, 91% of AI papers

used Nvidia’s CUDA framework and GPUs, a striking figure given that major competitors such

as Apple, AMD, Intel, Qualcomm, Arm, and Google continue to make significant advancements

in GPUs. To that end, we have built two portable prefix-scan implementations: one in WGSL

and another in OpenCL (for Vulkan backends). This work investigates these implementations

outlining issues and solutions with respect to performance and portability across six GPUs from

four vendors. We also introduce six key prefix-scan implementation decisions to tune our ker-

nels over. Tuning over these parameters, we have generated scan kernels on AMD and Nvidia

that at small sizes outperform and at large sizes come within 1% of vendor optimized imple-

mentations like Nvidia’s CUB come within 93% of this ceiling. We investigate implementation

quirks across Intel, Apple, Nvidia, and AMD devices but mainly characterize performance on

viii

AMD and Nvidia discrete cards. Through our testing, we find per–input-size tuning not only

maximizes performance, but also provides data that’s useful for a range of deployment con-

straints. For example, it allows us to identify best-on-average kernels for space constrained

platforms. In this way, tuning supports both peak optimization and practical deployment.

ix

To the UCSC faculty,

and my parents,

and who ever else wants to read it.

x

Acknowledgments

I’d like to thank Reese L, Tyler S, Devon M, Rihtik S, Liting H, Yuanchao X, my mom, dad,

and brother, Grandma Lucy, Naomi R, Touss M, and Erik C.

I want to thank Reese Levine for introducing me to this project and helping me

through it every step of the way. A year and three months ago, he posted a Google Doc asking

for undergrads to help with research. Randomly, I chose Prefix-scan not knowing what I was

getting into. For the first 30 days, I banged my head on my keyboard until my trackpad broke.

But Reese is like the tree of wisdom, not just because he’s tall. But because it always felt like,

no matter how stuck I was, even with problems that couldn’t be fixed (such as framework bugs),

they were still manageable. From day one, despite knowing nothing about GPUs, my questions

have always felt heard, and I have never once felt like I was being talked down to. Reese has

been my main consultant for this thesis and for all implementation things leading up to it. He

helped me with multiple rounds of feedback which for a 100 page paper is a lot to ask for any-

body. He has been a constant source of support in this work and in my life over the last year

and a half. Thank you Reese.

In the fall of 2023, I took Computer Systems with Professor Quinn, where I was

introduced to multithreading, which led me to reach out to both Quinn and Tyler. Despite never

having met me, Tyler responded warmly to my cold email and took a chance on me. From

the beginning, he was incredibly personable and supportive. As I’ve gotten to know him and

understand the lab more, I’ve been genuinely boggled by how he juggles so many projects,

xi

people, meetings, and moving pieces, and yet still makes time for individual meetings and

somehow has the bandwidth. Tyler has helped convince me that I am “cut out”. I certainly

would not be writing this if not for relentless thoughtfulness. In addition to emotional support,

Tyler has a firm grasp of the field of empircal GPU testing and has been instrumental in guiding

the narrative of this thesis. I can’t stress enough how necessary he’s been in helping me start,

persevere, and finish this work. Thank you Tyler.

Devon M: You always fix and update the birds so quickly and have given me pointers about

them, thank you for making the machines feel less daunting.

Rihtik S: Thank you for helping me consolidate my tuning work and giving me pointers on

benchmarking, your suggestions have been extremely useful.

Professor Liting & Professor Yuanchao: For co-advising me alongside Tyler. Thank you both

for the time and support.

Hernan Ponce De Leon: Thank you for the intriguing conversations and validating my Vulkan

implementation.

Jeff Bolz: Thank you for fixing the subgroupBarrier bug. This was absolutely necessary for

getting prefix-sum on Vulkan to work.

My mom, dad, and brother: Thank you for for always being there for me, accommodating and

me in all my endeavors, and being constant supports of love, unwavering support, normalcy and

comfortability in my life.

xii

Grandma Lucy: Thank you for being a sounding board and a proof reader simultaneously.

Naomi R: Thank you for sharing your thesis and presentation materials with me, and for helping

me navigate the experience of being an undergrad in research.

Touss M: Thank you for convincing me to join a research lab in the first place, and for being,

like Tyler, the sound I need to hear when I doubt myself.

Erik C: Thank you for being my #1 housemate for two years. For cooking and eating together.

Letting me rubber duck you. Being the one person I know I could see even if I had a midterm

due at 10pm and a flight to Virginia at 5am. There will be so many things I miss about our living

arrangement.

xiii

Chapter 1

Introduction

As data volumes grow, GPUs have become increasingly important for computing

tasks that benefit from parallelism. Their ability to efficiently process large datasets makes

them well-suited for many modern applications such as blockchain, machine learning, and sci-

entific computing [51, 18, 48, 33, 15, 46, 34, 56, 41]. One fundamental operation that enables

many parallel algorithms on GPUs is prefix-scan, which computes the running total (or other

associative operations) of a sequence of values. Applications of GPU prefix-scan include radix

sort, stream compaction, adder design, linear recurrence and tridiagonal solvers, parallel alloca-

tion and queuing, DNA Sequencing, quicksort, sparse matrix-vector multiply, fluid simulation,

and more [36, 5, 49, 50, 37, 16, 42, 64].

The earliest GPU prefix scan we found was written by Daniel Horn at NVIDIA in

2005 [17]. Since 2012, state-of-the-art GPU implementations of this primitive have become so

efficient that they are now memory-bound; that is, performance is limited by the rate at which

data can be transferred to and from the GPU [49, 17, 32, 30]. In 2013, another breakthrough

1

reduced the total number of global memory accesses from 3N to 2N, where N is the problem size

[63]. Most recently, in 2016, researchers from Nvidia introduced an improved global reduction

method called Decoupled Lookback, which further reduced latency in global prefix propagation.

On Nvidia devices, this strategy was shown to be so efficient that it matches the speed of a

memory copy operation at medium to large problem sizes [30].

Incredibly, all four of these breakthrough papers were conducted on Nvidia GPUs

while three out of three of these were solely conducted on Nvidia hardware. In 2024, 91%

of AI papers were conducted on NVIDIA’s GPUs, a striking figure given that major competi-

tors such as Apple, AMD, Intel, Qualcomm, Arm, and Google have recently made significant

advancements in GPU performance [58, 3, 61, 27]. Nvidia’s early investment in GPGPU (Gen-

eral Purpose GPU) and ecosystem of robust tools, libraries and hardware has resulted in their

widespread adoption across both industry and academia. However, CUDA is closed source,

and this heavy focus on a single vendor has hindered the broader GPU ecosystem. As a result,

alternative platforms remain underdeveloped and under-optimized.

GPGPU programming is a relatively new paradigm, with the first major framework,

CUDA, introduced in 2006. Since then, hardware and software ecosystems have evolved in

divergent ways across vendors. Differences in compute unit counts, memory hierarchies, thread

execution models, and compiler behavior make it challenging to write performance-portable

code. These variations complicate tuning strategies, particularly for parallel algorithms like

prefix-scan, where optimal parameters can vary significantly depending on the architecture.

[28, 24, 57, 45, 65, 11, 59].

2

1.1 Contributions

In this work, we contribute to the cutting edge of GPGPU research by implement-

ing two high-performance, portable prefix-sum kernels: one targeting SPIR-V, and another in

WGSL, extending support to Apple devices. Not only do these implementations achieve near

peak performance across multiple vendors, but because prefix-scan exercises many complex

and often under-tested features of GPU programming models, our work also surfaces several

previously unknown bugs in framework implementations. Moreover, we find that code devel-

oped within mature frameworks often requires substantial manual adaptation to be ported to

newer frameworks, typically at the cost of reduced performance. In particular, WebGPU being

the youngest of the three has extremely limited guarantees and support compared to CUDA and

Vulkan. To illustrate our point, WebGPU began supporting subgroups 8 months ago, Vulkan

8 years ago, and CUDA 18 years ago [35, 14]. Implementing the same prefix-scan algorithm

in WebGPU required numerous adjustments compared to Vulkan, largely due to differences in

language expressiveness and feature maturity. Even with similar high-level logic, performance

between the two frameworks varies considerably. Nonetheless, consistent with prior work, we

find that per-device and per-input-size tuning remains highly effective for extracting near-peak

performance across backends, devices and inputs. [65, 11, 59]. To this end, we identified

just six key implementation decisions to parameterize our kernels. Despite the small number

of tuning parameters, this design achieves strong performance across vendors: it outperforms

Nvidia’s vendor-optimized library at small input sizes and reaches up to 92% of global memory

bandwidth on both AMD and Nvidia GPUs at large sizes. For reference, Nvidia’s proprietary

3

implementation achieves 93% of global memory bandwidth. In summary, this thesis presents

ScanBox, a versatile GPU kernel tuning framework for prefix-scan, along with a detailed in-

vestigation of implementation portability across six GPUs and an in-depth characterization of

performance portability. We demonstrate its effectiveness in several real-world scenarios:

1. Single-GPU deployments: Per–input-size tuning identifies the best configuration for

each input size, delivering optimal performance across all inputs on a given device.

2. Single-GPU, single-kernel deployments: Useful in environments constrained by storage

or setup complexity. This approach finds the best single kernel across all input sizes, re-

quiring performance trade-offs but still achieving near-optimal performance on the target

device.

3. Multi-GPU, single-kernel deployments: Constrained by both storage and cross-platform

compatibility. This approach makes trade-offs across devices and input sizes to provide

robust, portable performance across a variety of hardware platforms.

4

Chapter 2

Background

In this section, we first review the fundamentals of GPU architecture, highlighting the

principles that make GPUs well-suited for parallel computation. We then examine the major

programming models and frameworks that support GPGPU development, focusing on Vulkan

and WebGPU. With this foundation, we turn to the parallel prefix-scan problem, presenting

various algorithms and strategies that have been proposed for efficient implementation on GPUs.

2.1 Basic GPU Architecture

This section will go over the architecture of the GPU. Compared to a CPU, GPUs have

thousands of times more cores [44]. To use this abundance of cores effectively, GPUs leverage

SIMD (single instruction multiple data) style execution [12]. A SIMD unit executes a single

instruction on multiple pieces of data in parallel. The underlying implementation of a SIMD

unit varies from vendor to vendor. AMD’s SIMD unit consists of sixteen SIMD lanes (each

with their own scalar ALU and register) that execute in lock step. AMD abstracts their plurality

5

away in documentation and calls them a VALU (vector ALU). ALUs in the same SIMD unit

always execute the same instruction in parallel so it is helpful to imagine the ALUs as a single

unit as AMD suggests [20, 38, 1, 2, 41].

Figure 2.1: SIMD architecture.

Multiple of these SIMD units are grouped into a compute unit (CU). Modern GPUs

employ SIMT (single instruction multiple thread). In this paradigm, when an instruction needs

to be executed a group of threads (often 16, 32, or 64) called a subgroup execute it all together, in

lock step. The subgroup executes this instruction on a CU using one or possibly multiple SIMD

units at the same time. SIMT allows for greater flexibility when threads within a subgroup need

to diverge from uniform control flow, that is, execute different instructions. Nvidia describes

that their architecture deactivates threads that don’t need to execute the divergent instruction.

AMD explains non-participatory threads of the divergent instruction are masked out during ex-

ecution. Divergent instruction execution incurs a significant performance penalty. GPUs spend

a significant amount of die on ALUs so they lack space for complex control units. This design

choice makes them very suited for highly parallel homogenous workloads [60]. Most archi-

6

tectures organize several subgroups into a workgroup. Workgroups are then assigned to a CU.

Multiple workgroups may share a single CU. Threads within a workgroup can communicate

using special CU memory called shared memory. The CUDA Programming guide says shared

memory is equivalent to a cache in memory speed [39]. The mapping between hardware and

thread is abstracted but subgroups are functionally equivalent to SIMD execution style from the

perspective of the developer [38, 20].

2.2 GPU Programming Model

In the GPU programming model, threads and memory are organized hierarchically by

intra-group communication speed and memory size [38, 1, 20].

Device

Thread

Subgroup

Workgroup

Figure 2.2: GPU Thread Hierarchy.

7

Subgroups Subgroup memory is small and not transparent to the programmer. It is advan-

tageous for threads in the same subgroup to execute the same instructions and avoid divergent

control flow so that the subgroup can execute in lock step avoiding non-utilized threads. Threads

in the same subgroup have access to special subgroup-level functions. These are SIMD-like

functions that enable low-overhead data sharing. They support efficient data-parallel opera-

tions and allow for broadcasting values across a subgroup, making them especially useful in

high-performance applications.

Workgroups Multiple subgroups are organized into a workgroup. Threads in a workgroup

can communicate using a local memory region called shared memory. Shared memory is bigger

and slower than the subgroup communication functions and operations but unlike subgroup

memory it is addressable to the programmer. Threads in the same workgroup communicate

through this shared memory region. Unlike subgroups workgroups do not have functions to

communicate or compute SIMD like operations. Executing computations or broadcasting data

using this shared data requires explicit synchronization to maintain coherence and atomicity

between threads of different subgroups.

Global Memory Threads in different workgroups can communicate using global memory.

Global memory is slow compared to the first two memory spaces.

GPU Programming Philosophy Effective use of the GPU involves organizing work to limit

communication to the most local levels of the execution hierarchy. Specifically, communica-

tion should occur at the narrowest possible level, starting within subgroups, then within work-

8

groups, and only resorting to global memory when necessary. Subgroup-level execution, in

particular, offers highly efficient communication and synchronization. However, until recently,

many frameworks did not expose subgroup operations, which placed non-CUDA platforms at

a disadvantage. As subgroup functionality becomes more widely supported, programmers are

increasingly able to write code that explicitly leverages subgroup execution for the bulk of the

computation, particularly in homogeneous workloads.

GPU-Friendly Workload Patterns Workloads with non-uniform control dependencies across

subgroups often perform poorly on GPUs, as they challenge the SIMD execution model and

limit efficiency. To maximize performance, developers should aim to minimize global memory

traffic and instead favor shared memory and subgroup intrinsics for fine-grained thread commu-

nication.

2.3 GPU Programming Frameworks

GPU Programming frameworks attempt to make following this philosophy as easy

as possible. Cuda, Vulkan, OpenCL, Metal and WebGPU are examples of GPU programming

frameworks. Each of these frameworks provides an interface for the GPU in the form of a pro-

gramming language. And each of these frameworks has their own specification that outlines the

rules for the language. CUDA and Metal are proprietary frameworks that are only built to work

on Nvidia and Apple devices respectively. OpenCL, Vulkan, and WebGPU are portable frame-

works that can work on a variety of devices. Vulkan and OpenCL are managed by the Khronos

Group, a non-profit organization focused on establishing effective open industry standards for

9

how certain GPU programming languages should behave. These frameworks work on most

GPU vendors except Apple [22]. WebGPU is a newer framework managed by W3C. W3C is a

non-profit organization focused on effective open standards for the web. There exists multiple

WebGPU language implementations but the most mature one, Dawn WebGPU, is spearheaded

by Google. Their framework can translate to Vulkan’s language, Apple’s Metal and Microsoft’s

HLSL making WebGPU more portable [62]. WebGPU comes with a higher level shading lan-

guage called WGSL and can be compiled into lower level code for any GPU. OpenCL’s high

level language is called OpenCL while the Khronos Group still supports OpenCL, Vulkan is

more modern and widely supported. Vulkan doesn’t come with a single high level shading

but instead comes with an intermediate representation called SPIR-V. Usually, other high level

shading languages like OpenCL, WGSL, and HLSL are compiled to SPIR-V for execution on a

Vulkan backend. In this work we focus on WGSL and OpenCL as our high level languages and

use CLSPV to compile OpenCL to SPIR-V. And we let WebGPU compile WGSL to SPIR-V

on Vulkan machines and Metal on Apple machines. The reason we use OpenCL even though

WGSL can compile to SPIR-V is that WGSL is a very new language and has an immature

implementation. For example, compiling to SPIR-V through WGSL doesn’t expose certain

subgroup features that are necessary for a more performant prefix-scan.

2.4 Prefix-scan

In the following sections we will begin to dive into prefix-scan, known colloquially as

scan, first abstractly as an algorithm and then become more specific with how to run it effectively

10

on GPUs. We begin by defining the reduction operator, which forms the foundation of the scan

operation.

The Reduction Operator The reduction operator takes in a list as input, performs an opera-

tion on the list, reducing it down to a single value. The scan reduction operator computes a scan

and only returns the final value. For brevity we will now refer to a scan reduction as just a reduc-

tion. Prefix-scan can be thought of as a series of reductions of the input list. To illustrate, let’s

use [1, 2, 3] as our example.[1, 2, 3] -> [1, 3, 6]. This is prefix-sum i.e., prefix-scan

using the addition operator. We compute this through a series of reductions. The first element

of the output is the reduction of the first element [1] -> 1. The second element of the output

is the reduction of the first two elements [1, 2] -> 3. The third element of the output is the

reduction of all the elements [1, 2, 3] -> 6. These three reductions return [1, 3, 6], the

solution to the initial scan.

Scan Algorithms: Serial Scan Many algorithms for scan exist. The first and most straight-

forward of them all is serial scan. In this strategy reductions are computed serially from start

to finish as exemplified in the previous section. This takes O(n) binary associative operations.

In this strategy we leverage out[i - 1] to compute output[i]. Reductions are automatically mem-

oized because they are all solutions in the output array. Therefore the memoization is trivial

but affords a perfectly work efficient solution for computing prefix-scan, that is, there is no

redundant computation. This straightforward implementation also illustrates the lower bound

of operations. Prefix-scan is bounded at O(n), n operations for an array length of n, i.e. there

is no way of calculating a prefix-scan with less than n operations [54, 49]. After seeing this

11

Figure 2.3: Serial Scan.

algorithm, it may seem like scan is an inherently serial process given elements depend on im-

mediately adjacent elements but this is far from true. In reality, each reduction does not need to

be computed in order, that is, we can compute groups of reductions in any order we want and

combine them later. As long as each reduction is computed in order the associative operator

affords the ability to compute multiple groups simultaneously.

Scan Algorithms: Hillis-Steele Hillis and Steele were the first to introduce a method that did

not depend on serial calculation and is therefore parallelizable.

12

X3X2X1X0

Σ(X2..X3)Σ(X1..X2)Σ(X0..X1)Σ(X0..X0)

Σ(X0..X3)Σ(X0..X0) Σ(X0..X1) Σ(X0..X2)

Figure 2.4: Hillis and Steele scan algorithm.

Since within a depth level there are no dependencies, multiple processors can work on

each calculation at the same time. This introduces the idea of how parallelization can improve

prefix-scan. However, compared to the sequential algorithm it does not scale well, due to poor

work efficiency. While serial scan performs n operations for the entire input, Hillis-Steele

performs n log n operations, where n is the input size. The amount of redundant operations can

cause the algorithm to perform worse than the serial scan for large inputs [19].

Scan Algorithms: Blelloch Four years later in 1990, Blelloch introduced a novel algorithm

that solved the problem of work inefficiency. Hillis-Steele and Blelloch’s strategies both de-

compose the input by splitting work up in halves but Blelloch, in his strategy, utilizes a tree

13

structure to organize an upsweep and downsweep phase that computes prefix-scan at the same

time asymptotically as the serial scan greatly improving upon the Hillis-Steele method. In the

first phase of Blelloch 1990, a reduction is computed in place leaving the array to have many

partial sums. These sums can be added up in a downsweep phase to generate a full prefix-sum

[4].

Figure 2.5: Upsweep & downsweep phases of the Blelloch 1990 scan algorithm.

This version solves the problem of work inefficiency and removes adjacent dependen-

cies inviting parallelization. This algorithm takes exactly 2n + 1 operations. Other algorithms

for scan exist such as Brent-Kung, Sklansky and Kogge-Stone but do not improve upon Blel-

loch in work efficiency. We also don’t dive into these other algorithms because their structures

are meant for circuits or other applications but Blelloch’s algorithm is the best suited for GPU

style parallelism [53, 25, 30, 7]. Even within GPUs, different scan algorithms are employed

at different levels of the GPU hierarchy subgroup, workgroup, and device, to best exploit the

architectural features and memory models available at each level. We will go into the details of

these strategies in the next sections.

14

Chapter 3

Methodology

We begin by surveying various GPU prefix-scan strategies across the GPU hierarchy.

We then identify the key parameters that define our implementation and introduce our tuning

framework.

3.1 Chained Scan: A Device-wide GPU Scan Strategy

Chained Scan is a general parallel strategy for computing prefix scans efficiently on

GPUs. The method breaks the input into blocks, each of which is processed independently by a

workgroup. Workgroups compute a “local” scan, that is, a scan of just their block, in fast shared

memory, producing both scanned values and a reduction. The reductions from each block are

themselves scanned to compute offsets for each block. Finally, each block’s scanned values are

adjusted by its corresponding offset to produce the correct global prefix sums. This approach

effectively utilizes the unique computing resources and memory types available at each level

of the GPU hierarchy. Only the reductions across blocks need to propagate through global

15

memory. Here is an example of using the trivial case where the input of prefix-scan is just ones

and the operator is addition. Using the trivial case as an example makes it easy to see how

Chained Scan works abstractly without implementation specific details.

Figure 3.1: Pseudo-code for Chained Scan algorithm.

We adopt Chained Scan as our device-wide strategy because of its inherently modular

structure. This approach naturally introduces two important parameters to our framework.

1. Chained Scan Variation: The strategy by which the GPU aggregates block reductions

to complete the full scan.

2. Inter-block Scan: The scan implementation used by each workgroup to compute a scan

16

over its assigned block.

We will first go into Chained Scan variations.

3.2 Chained Scan Variation: Sequential

There are three main variations of Chained Scan. We begin with the most straightfor-

ward: the Sequential Chained Scan.

Overview In this approach, the input array is divided into blocks, with each block assigned

to a separate workgroup. Each workgroup performs a scan and computes a reduction over its

assigned block. The reductions of these blocks are collected and scanned over to add as offsets

back to the blocks. The most straightforward way to accomplish this is by storing reductions in

an intermediate array as shown in the previous section. For further details, we use StreamScan’s

approach.

Implementation To begin, an intermediate array is initialized with a flag U to indicate that a

block’s computation is unfinished. Each workgroup first performs a scan over its own block of

data. Then, it repeatedly checks the value at block_id - 1 in the intermediate array, waiting

until that entry contains a completed reduction value instead of U. Once available, the workgroup

adds its own block’s reduction to this value and writes the result to its corresponding block_id

position in the intermediate array. To generalize, this is effectively a serial scan implemented at

the workgroup level.

17

Figure 3.2: Sequential Chained Scan visualization.

The Problem With Sequential Chained Scan In large scans, workgroups often idle while

waiting for their predecessor’s result in global memory. This sequential dependency creates

significant latency, as thousands of workgroups stall instead of issuing useful instructions to the

pipeline. Because blocks may still be incomplete, adjacent scan values can’t be computed in

parallel without coordination. If workgroups could detect when their inputs were ready, partial

scans could continue concurrently, improving throughput.

18

3.3 Chained Scan Variation: Decoupled Lookback

The Decoupled Lookback strategy from Duane Merrill and Michael Garland’s 2016

Nvidia paper addresses this issue. This version of Chained Scan introduces three key changes.

Key Changes First, instead of spinning until the global reduction reaches their index in the

intermediate array, workgroups immediately write their own reduction to the array as soon as

they finish their local scan. Second, because the intermediate array can now contain values

that are not final reductions (i.e., not just the global reduction or U), each entry must always

include a status flag indicating the status of the reduction. Third, rather than waiting for the

global reduction to reach their position, workgroups look back through the intermediate array,

starting from the previous index, and accumulate reductions from earlier blocks. This allows

workgroups to continue computing partial scans and decouples adjacent dependencies. As more

partial reductions are computed, workgroups begin to incorporate earlier reductions into their

own. Over time, these partial results accumulate across blocks, and once all block reductions

have been combined, the full device-wide scan is complete. This may sound a bit like magic,

so let’s fill in some gaps starting with the contents of the intermediate array.

Implementation Instead of storing just a reduction or a U flag, each element now holds two

pieces of information: a status flag and a reduction value (if available). We’ll cover more details

of this process in subsequent sections, but for now, it’s important to understand that the status

flag indicates one of three possible states. We’ll begin with the first two. The first state is

UNREADY, meaning the block-wide scan hasn’t completed yet, and no reduction is available.

19

The second is READY, meaning the block-wide scan has completed, and the reduction has been

written to the intermediate array. Once a workgroup reaches the READY state, it begins to “look

back” in the intermediate array. If the previous block is still UNREADY, the workgroup must

wait, spinning until the needed reduction becomes available so it can aggregate it into its own.

Workgroups may not skip over UNREADY blocks and aggregate further reductions because this

would change the order of operations and scan operators are not promised to be commutative.

The third possible state for a block is FINISHED (in contrast to UNREADY and READY). When

a block has the status flag FINISHED, it means its reduction value in the intermediate array

includes all reductions from preceding blocks. In other words, it is no longer a partial result but

a complete scan up to that point. The first block to reach the FINISHED state is always block

0, since it has no predecessors and its scan is, by definition, complete. The FINISHED state

propagates when a READY block aggregates a FINISHED block’s result, effectively becoming

FINISHED itself. This process continues as workgroups, in parallel, build on previously finished

results. Eventually, all blocks become FINISHED, meaning each one contains the complete

reduction of all preceding blocks, which is the definition of a prefix-scan.

3.4 Chained Scan Variation: Parallelized Decoupled Lookback

Parallelized Decoupled Lookback is an optimization of the standard lookback phase

that takes advantage of subgroup-level parallelism. Instead of checking one block at a time se-

quentially, a full subgroup looks back across a range of consecutive blocks in parallel, speeding

up the process of finding and aggregating prior reductions. To take advantage of subgroup paral-

20

Figure 3.3: OpenCL-like Sequential Decoupled Lookback pseudo-code.

lelism, all the blocks being looked back onto must be either READY or FINISHED. If any block in

that range is still UNREADY, the subgroup can’t proceed, just like in the sequential version, where

threads must spin at UNREADY blocks before continuing the scan. If a subgroup looks back and

finds that all threads are READY, it scans the corresponding reductions in parallel, computing

partial reductions for multiple blocks at once. If one or more of the blocks is FINISHED, the

highest FINISHED block holds the most complete global reduction so far. Using that as a start-

ing point, the subgroup can scan through the READY blocks that follow, adding their reductions

21

to compute an even more mature FINISHED reduction.

Figure 3.4: Visualization of Parallelized Decoupled Lookback.

3.5 Intra-block Scan: Approach and Implementations

This section covers intra-block implementations of scan. Since these scans are limited

to the hardware resources of a single workgroup, the design considerations are different from

the abstract view of scan algorithms. Intra-block scans are usually small in size, which directly

impacts how they’re implemented and how they perform. As mentioned, each block is handled

by a single workgroup, and at peak utilization, a workgroup can occupy only one compute unit.

Because of this, block-level input sizes are often too small to approach the asymptotic limit,

so the algorithm’s time complexity matters less than how it performs at realistic sizes. Over-

head is another consideration that time analysis does not address. Algorithms that maximize

parallelism can also incur overhead, as thread scheduling introduces its own costs. With these

22

considerations in mind we focus on two main implementations for intra-block scan. Blelloch

1990 and Blelloch SIMD Raking.

Blelloch 1990 We’ll start with Blelloch 1990, the same algorithm introduced in the back-

ground. As previously explained, it has the same asymptotic efficiency as serial scan, perform-

ing 2N + 1 operations compared to N in the serial version. This algorithm maximizes thread

parallelism by ensuring all workgroup threads are active and performing an equal share of the

work at all times. For smaller global inputs, this can introduce unnecessary overhead due to

missed opportunities to use faster intra subgroup communication and by incurring the cost of a

workgroup barrier needed at each depth level to keep shared memory coherent.

SIMD Raking SIMD raking takes the opposite approach, using a single subgroup to compute

the entire block scan [6]. This minimizes overhead for intra-workgroup communication since

all threads operate within the same subgroup. SIMD Raking trades abundant parallelism for

reduced communication overhead. This technique is related to Brent’s theorem, which says

that fixed overhead can be mitigated by increasing the amount of work assigned to each thread

[8, 23]. In this strategy, each thread in the subgroup is partitioned a chunk of the block to

compute serially. Then the reduction of each chunk is scanned using subgroup scan, effectively

computing a chained scan of the block. This chained scan doesn’t need any fancy propagation

strategy because reductions are scanned using subgroup scan. Using subgroup scan enables

the lighting fast propagation and computation because memory operations at subgroup level

are extremely fast compared to others. Both SIMD Raking and Blelloch (1990) are effective

block-level strategies, each with distinct strengths.

23

3.6 More Tuning Parameters

Workgroup and Thread Count The number of workgroups and the number of threads per

workgroup are key tuning parameters when dispatching GPU kernels. These choices directly

impact how the workload is split across the GPU and how efficiently hardware resources like

shared memory are used.

Memory Batching Another key consideration in prefix-scan is per-thread loads (batch size):

determining how many elements each thread should load from global memory at once to opti-

mize performance. Merrill et al. suggest that batch sizes of 20, 21, and 22 elements are reason-

able for per-thread loads in the context of a memory copy operation. Initially, we followed this

guidance, as prefix-scan is a memory-bound operation at large input sizes. However, later ob-

servations suggested that this limitation does not always hold. So we parameterize prefix-scan

on batch size as well [31].

Data Types Building on this, it’s just as important to consider which type of element to load,

whether packed types like vec2 or vec4, or scalars like uin32_t or float64. Performance

varies significantly depending on the type used. Because of this, we parameterize the scan

implementation based on data type.

3.7 Why are we tuning?

With all parameters considered, there are over 3,500 possible kernel configurations.

Given the size of this space, identifying the optimal combination for a given device is non-trivial.

24

Prior work has shown that per-device tuning can significantly improve kernel performance, and

when combined with per–input-size tuning, it can even outperform vendor-optimized imple-

mentations by up to 230% [29, 65, 11, 59, 47]. To evaluate kernel performance for prefix-scan,

we use throughput measured in gigabytes per second (GB/s). Since prefix-scan is memory-

bound, throughput gives a direct view of how effectively memory bandwidth is being used.

Specifically, we base this on input size, accounting for one full read from global memory (N

reads) and one full write back (N writes), for a total of 2N memory operations.

3.8 Tuning Approach: Execution Details

Each parameter has been introduced in previous sections. Here, we formalize these

parameters as part of our tuning framework, outlined in Table 3.1.

Parameter Values

Batch Size 1, 2, 4, 8, 16
Data Type vec2, vec4
Workgroup Size {2i | log2(subgroup size)≤ i ≤ log2(device limit)}
Workgroups {2i | 16 ≤ i ≤ log2(device limit)}
Lookback Strategy Parallelized Decoupled, Sequential Decoupled
Block Scan SIMD Raking, Blelloch (1990)

Table 3.1: Summary of tunable parameters in our prefix-scan framework.

Generating Configurations A configuration refers to a specific combination of tuning pa-

rameters. Each configuration corresponds to a particular input size, since the total number of

input elements is determined by multiplying certain parameters together. The input size, mea-

sured in number of elements, is computed as follows:

25

batch_size * thread per workgroup * workgroups * memory type = number of elements

If the element is a uint32_t then the input size in bytes is calculated by multiplying the above

equation by four.

Parameter Passing To assist the compiler, parameters are interpolated directly into the source

code before compilation rather than passed through buffers. This allows the compiler to treat

them as constants, enabling more aggressive optimizations.

Parameters Constraints In general, we restrict the number of elements to powers of two

ranging from 210 to 229. Within this range, all configurations are valid, that is, all parameter

combinations can execute together without compatibility issues. The only exception is that con-

figurations causing any single element of the scan to exceed 230 are invalid, since our variables

require two bits to store the status flag. This detail will be examined further in the following

chapter.

Exhaustive Searching Rather than focusing solely on finding the single best-performing con-

figuration, our framework performs an exhaustive sweep over the entire parameter space. This

comprehensive approach allows us to analyze how performance varies across devices and input

sizes, yielding data that informs tuning decisions across a wide range of deployment scenar-

ios. While optimization strategies like genetic algorithms, simulated annealing, or Bayesian

optimization have been shown to efficiently discover high-performing configurations, our pri-

mary goal is to characterize the broader performance landscape, with an emphasis on portability

across hardware platforms and environmental constraints [9].

26

Chapter 4

Implementation

Having established our overall tuning strategy and algorithmic approach, we now

turn to the specifics of our implementation. This section begins with an overview of the tools,

frameworks, and setup used for each kernel. We then discuss the initial challenges encountered

during development. Finally, we describe the device-specific, framework-specific, and GPU-

wide adaptations required to achieve correct and efficient execution across a range of hardware.

4.1 Toolchain and Frameworks

This work aims to build a portable and performant prefix-scan. We use WebGPU and

Vulkan as our graphics backends, targeting them with two main kernels: one written in OpenCL

and the other in WGSL. To run on Vulkan, we use CLSPV, which compiles OpenCL code to

SPIR-V. WGSL, on the other hand, works natively with WebGPU, so no transpilation tool is

needed in that case. For our Vulkan setup, we use EasyVK, a simplification layer developed

by CHPL that makes Vulkan more accessible for lightweight GPU compute tasks [26]. Nor-

27

mally, setting up Vulkan can take hundreds of lines of boilerplate code, even for something as

simple as vector addition. With EasyVK, the same functionality can be achieved in 30 lines

of C++ or less. For our WebGPU distribution, we chose the Dawn because it’s currently the

only implementation that supports subgroups. We initially developed using WebGPU Native,

which enables writing WebGPU setup in C++, but it doesn’t allow selecting a specific GPU on

multi-GPU systems. To work around this, we switched to a JavaScript setup and ran the algo-

rithm in the Google Chrome browser, where we could choose the target GPU using Chrome

flags. While we successfully built functional versions in both frameworks, WebGPU’s limited

subgroup support hindered the correctness of our implementation. As a result, we primarily

focus on Vulkan for much of the results section. Vulkan is state-of-the-art and only lacks Apple

support compared to WebGPU, making it a solid platform for illustrating our core ideas.

4.2 Vulkan: Initial Issues

We began developing a GPU prefix-sum (prefix-scan using the addition operator)

implementation in March 2024 using Vulkan, since WebGPU didn’t support subgroups at the

time. Our design follows NVIDIA’s prefix-sum paper, using Parallelized Decoupled Lookback

for inter-block strategy and SIMD Raking for intra-block reductions. Early in the development

we were met with many issues. All five of our test devices failed to run the implementation out

of the box. Driver bugs, compiler issues, and vendor-specific quirks all contributed to the lack

of functionality [55].

28

Device Status
AMD XT 7900 Broken
AMD Radeon Graphics Broken
Intel ARC A770 Broken
Intel UHD 770 Broken
Nvidia RTX 4070 Broken

Table 4.1: Summary of device functionality at the beginning of development.

Intel Subgroup Issue The first fix we found was for our Intel cards. The behaviour was that

prefix-sum would non-deterministically produce incorrect results. After thoroughly checking

the code and ruling out programming bugs, we discovered that Intel cards don’t always enforce

full subgroups leading to unexpected behavior. After some digging, we found a flag to pass

during shader creation that forces full subgroups. Without this flag:

VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT

full subgroups aren’t guaranteed, which is necessary for our implementation. Adding this flag

enabled prefix-sum to work correctly on our Intel GPUs [21].

Device Status
AMD XT 7900 Broken
AMD Radeon Graphics Broken
Intel ARC A770 Running
Intel UHD 770 Running
Nvidia RTX 4070 Broken

Table 4.2: Summary of device functionality after adding the require full subgroups flag.

29

4.3 Vulkan: Framework and Toolchain Bugs

Next, we addressed our AMD and Nvidia devices. Both consistently failed to produce

correct results on any input size when using more than one workgroup. This behavior pointed

us toward the Parallelized Decoupled Lookback section which only executes if more than one

workgroup is active. However, due to its complex control logic and synchronization, the issue

wasn’t immediately obvious. On both devices, we attempted to remove unneeded sections of

the implementation to isolate the problem. However, seemingly unrelated code continued to

affect the result, complicating the debugging process. After reducing the kernel to minimal

examples that consistently reproduced the issue, we confirmed that our implementation was

correct, indicating the failure was not due to a programming bug on our end.

Kernel Behavior: NVIDIA When the kernel executes, thread 31 of subgroup 0 is expected to

update local_scan with the result of subgroup_scan_exclusive_add. However, the work-

group memory barrier fails to propagate this value to higher subgroups, which instead observe

the initial value (5). The failure mode of this bug is particularly complex, seemingly unrelated

code, such as the dynamic workgroup allocation at the top of the kernel, turns out to be essential

for reproducing the issue.

30

Figure 4.1: Minimized code example of the Nvidia Vulkan bug.

31

Kernel Behavior: AMD Upon launching the kernel, local_var is initialized, and some work

happens in the first subgroup that needs synchronization. Then, the first thread of subgroup zero

sets local_var to zero. Next comes an untaken branch, this branch can be anything as long as

it’s not simple enough for the compiler to optimize away (if it’s a compile-time constant, the bug

disappears). The expected behavior is that after the workgroup memory barrier synchronizes

local_var, every thread in the workgroup should see it as zero. Instead, threads in higher

subgroups observe random values. The failure itself is not as complex as Nvidia’s but still

requires an interesting setup.

Figure 4.2: Minimized code example of the AMD Vulkan bug.

32

Debugging the Toolchain Given that the issue was not due to our own programming, we

turned to the two key tools involved in handling our code. One of them is CLSPV, which com-

piles our OpenCL source into SPIR-V. It was possible that CLSPV was incorrectly generating

SPIR-V during compilation. To verify this, we compiled pairs of nearly identical kernels, one

that exhibited the bug and one that did not, and traced their execution to identify any divergence.

This allowed us to check whether CLSPV produced only the expected differences between the

two. For AMD, we modified the kernel by moving the definition of local_var from subgroup

zero to subgroup one, for Nvidia we made a very similar change. We include the SPIR-V output

for AMD below: the left kernel does not reproduce the bug, while the right one does. Since this

is the only difference and it aligns with our intentional change, we conclude that CLSPV is not

the source of the issue.

... ...
uint_1 = OpConstant %uint 1 uint_0 = OpConstant %uint 0
... ...

With programming errors and CLSPV ruled out, the bug was likely rooted in the Vulkan imple-

mentations provided by AMD and Nvidia. Since both bugs originate in the lookback sections

of our implementation, developing reliable workarounds would be challenging. As a result, we

reported the issues to the respective Vulkan driver teams at AMD and Nvidia in the hope that

they could be patched.

Vulkan Implementation Bug Solutions On Nvidia’s side they swiftly acknowledged and

patched the bug in their Windows 553.22, Linux 550.40.76 Vulkan drivers [40]. However, we

never received a response from AMD. Fortunately, AMD’s MESA drivers did not exhibit the

33

Device Status
AMD XT 7900 Running
AMD Radeon Graphics Running
Intel ARC A770 Running
Intel UHD 770 Running
Nvidia RTX 4070 Running

Table 4.3: Summary of device functionality after all aforementioned changes.

same behavior resulting in finding a functioning implementation on all five devices.

From here, we attempted to gather performance results, but the discrete devices were reporting

lower throughput than the integrated ones pointing to an issue with our memory handling.

Device-Local Memory: Benchmarking Limitations We discovered that the issue stemmed

from our use of host-device visible memory. Although convenient, this type of memory is acces-

sible to both the CPU and GPU, and significantly slower than device-local memory. To address

this, we implemented a staging process, data is first written into a CPU-accessible buffer, then

transferred into faster, device-local memory for execution. This staging strategy enables ac-

curate throughput performance measurements on devices which don’t have host-device unified

memory.

Transpilation Issues: CLSPV Bug After taking an extended break from developing we came

back and found that CLSPV was failing to compile our kernel. The kernel however had not been

touched for a good amount of time and the compiler was segfaulting so this pointed to an issue

with CLSPV as opposed to a bug in our code. In order to be sure this was the case we also tried

compiling our program using the CLSPV compiler on godbolt.org which hosts the most up to

34

date versions of various compilers [13]. After observing the online compiler segmentation fault

we posted an issue to CLSPV’s issue section. According to the investigation by the developers

there was a bug with pointer bistcasting. Luckily, the bug was quickly resolved within two days

and we were able to continue working.

4.4 Vulkan: Formal Verification

In these earlier versions of our scan we were constantly unsure of our program’s cor-

rectness due to the myriad of bugs we encountered. This was especially true as we started

increasing our tuning space, adding new parameters and constructions to support new optimiza-

tions. In order to be sure of certain parts of our program we employed Dartagnan. Dartagnan

is a tool for checking state reachability under weak memory models [43, 10]. It helps verify

that concurrent CUDA or Vulkan programs behave correctly under relaxed-memory conditions.

Using this tool, we uncovered hidden race conditions in our Blelloch 1990 implementation,

detecting violations between distant lines of code that could have caused future issues. After

fixing said issues, we confirmed our Blelloch 1990, memory loading, and Sequential Decoupled

Lookback code to be functionally correct. Dartagnan currently supports checking global and

workgroup memory handling so checking of Parallelized Decoupled Lookback and SIMD Rak-

ing, which use subgroups, is not possible yet. After fixing these issues and months of carefully

scrutinizing Parallelized Decoupled Lookback for bugs, we became confident that the rest of

our code was race-free and ready to move forward with WebGPU.

35

4.5 WebGPU: Initial Issues

In January 2025, five months after subgroups were added to WebGPU, we began

porting our Vulkan implementation. Unlike Vulkan, where toolchain and driver issues slowed

us down, WebGPU progressed more smoothly with no framework-level bugs. However, we did

encounter a compiler issue with WebGPU’s memory safety features.

Bounds Checking in WGSL When first building our WGSL implementation, we mistrans-

lated a piece of code from OpenCL causing our WGSL code to be incorrect:

if (local_id.x == 0) {
atomicStore(&prefix_states[part_id], shared_data[local_id.x - 1]);

}

This WGSL code is incorrect because shared_data[-1] is being accessed every time. While

the correct line is shared_data[local_size - 1]. The interesting part is that this code

worked on all the devices for several months even though it relied on the wrong value. While

optimizing throughput, we tested a new Chrome Dawn flag, disable_robustness, which dis-

ables bounds checking. This broke the program and exposed the issue. It turns out that, by de-

fault, WebGPU clamps out-of-bounds array accesses, which silently turns -1 into array.length()

keeping the program running with the wrong logic.

index = 5;
value = buffer[min(index, buffer.length - 1)];

This was curious because under the hood disable_robustness removes a Min() function so

it was initially confusing why the last index was being returned and not zero. The most likely

reason is that the incorrect value, -1 and UINT_MAX are being confused. Min() likely expects

an unsigned number, and -1 looks like UINT_MAX bitwise.

36

index = min(UINT_MAX, buffer.length - 1)

This feature made debugging trickier by masking this bug. While using min ensures memory

safety, a more transparent approach, like raising errors or returning a defined default for out-of-

bounds accesses, could help catch issues earlier and simplify reasoning about program behavior

4.6 Vulkan and WebGPU: Implementation Adaptations

For the majority of development we tested our implementation on six devices from

four vendors, Intel, Nvidia, AMD and Apple. In the proceeding sections we will enumerate

the implementation adaptations we found to be necessary to function on all of our devices and

optimizations

Three-Field Block Descriptor: Overview Initially, our implementation utilized a three-field

block descriptor. As a reminder the block descriptor has been previously described as storing

the status flag and reduction of each block in the device wide scan. However, in the Decoupled

Lookback paper the original descriptor is described as having three fields, the status flag, the

aggregate, and the inclusive prefix. This descriptor holds the block reduction in two separate

values, aggregate and inclusive_prefix depending on if the block’s reduction is FINISHED

or just READY. In OpenCL we implemented this using an array of structs where each struct had

three fields, status_flag, aggregate and inclusive_prefix. The status flag field must be

atomic since it is possible that while a workgroup is updating its block flag, another workgroup

might want to look at its flag.

37

Two-Field Block Descriptor: Overview In a three-field block descriptor, threads must choose

between loading either the inclusive_prefix or aggregate field. By merging these into a

single reduction field, threads within the same subgroup avoid conditional branching, elimi-

nating divergence and saving valuable subgroup cycles during each lookback.

Figure 4.3: Efficient, single value approach.

Multi-Field Block Descriptor: Memory Ordering Requirements Whether using a two

or three-field block descriptor, explicit atomic memory ordering is required. Without it, the

compiler may reorder memory operations, creating a race condition where a later workgroup,

during a lookback, observes the status flag as FINISHED before the owning workgroup has

written the updated reduction value. As a result, the reading workgroup may see a stale or

38

uninitialized reduction. To prevent this reordering from happening memory fences can be

used. Memory fences prevent reordering of memory reads and writes across the line where

the fence was written. This strategy works but is actually overkill for our purposes. Instead we

can accomplish correctness by utilizing Vulkan’s acquire-release memory semantics. Vulkan

atomic operations have a second argument which allows you to declare the memory order-

ing. To formalize the problem, we want to be sure that all stores to the block reduction occur

before an atomic write to status_flag so that another block can never load a stale reduc-

tion value. Similarly, we don’t make any writes to reduction until after the status_flag

has been properly loaded so that we never make stores based on a stale flag. Using the flag

memory_order_aquire prevents loads and stores beneath that memory operation from being

reordered while memory_order_release prevents loads and stores above it from being re-

ordered. So we can use these semantics to efficiently enforce the necessary memory ordering by

marking flag loads with memory_order_aquire and flag stores with memory_order_release.

One-Field Block Descriptor Overview and WebGPU Acquire-Release Support In We-

bGPU, global memory acquire-release semantics are not supported on global atomic operations.

This prevents efficient two-field descriptor implementations from being possible in WebGPU.

Thankfully there exists a one-field descriptor implementation which obviates the need for mem-

ory ordering semantics at all. In a one-field descriptor, the status flag and the reduction are bit

packed into an atomic memory location. Due to flag-reduction loads and stores occurring in

the same instruction it is never possible for either value to be stale. Therefore relaxed memory

ordering suffices. Bit-masks are used to decompose and re-store the flag and reduction. For

39

memory location, we use an unsigned 32 bit integer and save the two most significant bits for

the flag. This version however does not support values that can’t be represented with less than

30 bits since two bits are being used for the flag. Fortunately, this is often unproblematic since,

as mentioned in the background, many applications of scan target sparse arrays or use logical

operators which don’t accumulate values as big as 230.

One-Field Block Descriptor: Performance Evaluation One-field block descriptors are more

instruction-efficient than their two-field counterparts. In a two-field setup, each lookback thread

must first load the status flag field of the descriptor. If the flag indicates readiness, a second load

is issued to retrieve the reduction value. This results in one, and often two, global memory loads

per thread. In contrast, a one-field descriptor always requires only a single load per thread, com-

bining both status and data. This simplification reduces the number of global loads per thread

during parallelized and sequential lookback, significantly improving lookback latency.

Workgroup Scheduling: Runtime ID Allocation Most frameworks’ programming models

assign each workgroup a numeric rank within the wider device environment. However, the order

in which workgroups are actually scheduled is unrelated to this rank. Decoupled Lookback

hinges on that rank to determine a block’s place in the overall device-wide scan. If the device

schedules non-adjacent workgroups and is fully occupied, some blocks may continue polling

on UNREADY blocks whose workgroups were never, and will never be, scheduled. This behavior

risks deadlock unless the strategy is adapted. To address this, we employ ordered workgroup

scheduling by dynamically assigning workgroup IDs. In the order that workgroups are naturally

scheduled, the first thread of each workgroup performs an atomic fetch-add on a device-wide

40

atomic variable, assigning itself a unique ID for the rest of execution. This ensures that adjacent

workgroups are scheduled contiguously, improving waiting times and reducing the chance of

deadlock.

WebGPU Limitation: Missing Subgroup ID Support WebGPU recently added support for

subgroups. However, WGSL still doesn’t expose subgroup_id, which restricts parallel strate-

gies that rely on subgroup indexing. Subgroup indexing is critical in prefix-scan because each

subgroup’s rank determines its place in the overall block scan. Without access to this ordering,

subgroups can compute local scans, but their results can’t be properly assembled into a full

block-wide scan. Partitioning workgroup threads into subgroup sized chunks is trivial, and can

be computed like this.

pseudo_subgroup_id = local_id.x / workgroup_size

However, this construction is quite hacky, since the mapping it relies on is not guaranteed to be

true. Because the WGSL compiler cannot assume that this mapping holds, it treats psuedo-

subgroup threads as potentially non-uniform, which is problematic for subgroup functions.

Specifically, the WGSL compiler raises a “Non Uniform Control Flow” error when only one

pseudo-subgroup is ordered to execute a subgroup-level function. This is due to the fact execut-

ing subgroup functions outside of uniform control flow leads to undefined behavior. In general,

any kernel using the pattern shown in Figure 2 can lead to undefined behavior triggering a “Non

Uniform Control Flow” error.

41

Figure 4.4: Undefined and disallowed subgroup behaviour.

This significantly impacts our algorithm’s ability to run on WebGPU because both the SIMD

Raking block and Parallelized Decoupled Lookback execute with just one subgroup and rely on

subgroup-level functions. Our implementation of SIMD Raking throws “Non Uniform Control

Flow” on line 11 for this reason.

42

Figure 4.5: SIMD Raking is technically undefined in WGSL.

Fortunately, we found that all of our test devices, except those made by Intel, use

the mapping let subgroup_id = local_id.x / subgroup_size under the hood. To work

around the subgroup uniformity compiler error, we disable subgroup uniformity analysis by

adding the following directive to our WebGPU setup:

diagnostic(off, subgroup_uniformity);

This enables our program to run without the compiler causing issues. Experimentally, our

program works across all input sizes for all non-Intel devices. In general, this implementation

works but is not guaranteed to be correct because of these limitations.

43

Chapter 5

Results and Discussion

5.1 Roadmap for Results and Discussion

In this section, we investigate the performance impact of exhaustive per–input-size

tuning for GPU prefix-sum. For each device, we define an Ideal Configuration Set (ICS) as

the unique set of optimal configurations, one for each input size, identified through exhaus-

tive search. We also determine a best-on-average kernel for each device: a single kernel that

performs well across all input sizes, useful in scenarios constrained by storage or setup com-

plexity. Finally, we extend both analyses to a multi-device setting, constructing the ICS and a

best-on-average kernel that jointly optimize performance across multiple devices.

5.2 ScanBox: Initial Results

44

Figure 5.1: Intial Nvidia RTX 4070 prefix-sum plot (throughput in GB/s).

This throughput plot shows the performance of our Vulkan implementation on the

RTX 4070. For each input size, we explore a parameter space that includes batch size, work-

group size, and local reduction strategy. Parameter b represents block scan strategies a =

SIMD Raking, c = Blelloch 1990. Parameter w and t represent workgroups and workgroup

size (threads) respectively and bs represents batch size, i.e. how many unsigned 32 integers

we load per workgroup thread. The goal of the implementation is to approach the device’s

throughput ceiling, which for the RTX 4070 is 504 GB/s. For each input size, we exhaustively

searched all combinations of the parameters, and the plot shows the configurations that yielded

the highest throughput. We do not include the throughput ceiling in this plot because the 504

GB/s limit lies beyond the plotted range. In upcoming plots, we include this ceiling for refer-

45

ence. However, the observed throughput does not approach this limit. Our AMD discrete was

performing well but irregularly with large throughput differences between runs hence why we

do not include it.

Performance Highlights and Takeaways Parameter a, SIMD Raking seems to be more pop-

ular in earlier sizes and then after the 222 elements c, Blelloch 1990 is more effective. Notably,

there is a consistent dip in throughput at 222 elements, a pattern that appears in subsequent plots

as well. This behavior likely stems from interactions between the device’s cache architecture

and our implementation. Similar performance drops can also be observed, to varying degrees,

in both memory copy operations and Nvidia’s CUB scan. Building on the insights gained from

local scan type selection, we considered expanding the parameter space to include sequential

(unparallelized) lookback. Given that different input size regimes favor different strategies,

sequential lookback may also prove useful in certain cases.

46

Figure 5.2: Nvidia RTX 4070 prefix-sum parametrized on Parallelized Decoupled Lookback

vs. Sequential Decoupled Lookback (throughput in GB/s).

However, with this expanded parameter space, we found that performance was consis-

tently worse across all input sizes. As a side note, this reinforces just how critical subgroup-level

memory access is for performance. Parallelized lookback takes advantage of single-subgroup

operations, but in WebGPU, the lack of subgroup indexing support makes this optimization

both hacky and technically incorrect. After confirming that this direction was unproductive,

we shifted focus toward more strategic optimizations. Since prefix-scan is a memory-bound al-

gorithm, we hypothesized that improvements related to memory movement would be the most

impactful. This led us to explore loading data types beyond the standard 32-bit unsigned inte-

gers.

47

Figure 5.3: AMD XT 7900 varying input data types (throughput in GB/s).

This plot shows results from our AMD RX 7900 XT. For each input size, we ex-

haustively search the parameter space, including batch size, number of workgroups, workgroup

size, lookback preference, and local scan type. The plot lines represent different constraints

on memory type. The dotted line uses only 32-bit unsigned integers and performs worse than

the colored lines, which leverage vectorized data types. The light purple line uses vec4, while

the dark purple line is parameterized over both vec2 and vec4. These results demonstrate that

switching between vector types exceeds unsigned 32 bit integers in throughput performance

at these input sizes. At 223 elements, we observed up to a 80 GB/s improvement when using

vector types compared to non-vectorized implementations. These initial results motivated us to

incorporate vector types into our parameter space.

48

5.3 ScanBox: Fully Tuned Performance Results

49

(a) AMD XT 7900 exhaustive per input size tuning — Throughput in GB/s.

(b) Nvidia RTX 4070 exhaustive per input size tuning — Throughput in GB/s.

50

The inclusion of vector data types in our tuning parameters enabled ScanBox (Vulkan)

to achieve peak throughputs of 731 GB/s on the AMD GPU (91.5% of theoretical memory

bandwidth) and 463 GB/s on the Nvidia GPU (92%) at large input sizes. Compared to Nvidia’s

proprietary CUB library, our approach delivers performance that is on par with or better than

CUB at the majority of input sizes.

Figure 5.5: Nvidia RTX 4070 Vulkan vs. CUB.

ScanBox vs. CUB: Cross-Platform Performance Comparison We divide the plot into three

regions: small, medium, and large input sizes, and use the theoretical bandwidth limit as a ref-

erence point to assess how well each implementation utilizes available hardware across devices.

At small input sizes (215 to 221), ScanBox consistently outperforms Nvidia’s CUB implemen-

tation by up to 43%. At large input sizes (227 to 229), ScanBox and CUB are nearly tied on

51

Nvidia hardware, with CUB holding a slight 1–2% advantage. Notably, when normalized to

theoretical bandwidth, this level of efficiency is maintained across vendors: on AMD GPUs,

ScanBox reaches within 2–3% of Nvidia CUB’s relative performance. This demonstrates both

strong cross-platform portability and competitive performance.

Device Implementation Percentage of Bandwidth Input Size
Nvidia RTX 4070 CUB (CUDA) 93% 229

Nvidia RTX 4070 ScanBox (Vulkan) 92% 229

AMD XT 7900 ScanBox (Vulkan) 91.5% 229

Table 5.1: Percentage of memory bandwidth achieved compared to the device ceiling.

However, at medium sizes (222 and 223), CUB outperforms our method by up to

125%. We suspect this is due to optimizations in CUB that more effectively utilize global

memory caching. Since CUB only exceeds our performance in this cache-dominant regime,

where observed throughput exceeds the theoretical memory bandwidth limit, its advantage is

likely driven by more efficient use of GPU caches.

5.4 Performance Variability: The Need for Input-Specific Tuning

In the implementations above, we heavily rely on per-input-size tuning, which can

be time-consuming to perform. But is this effort justified? Does per-input-size tuning offer

significant benefits over device-level tuning? To investigate this, we visualize the distribution of

parameter configurations for each input size. Using the AMD RX 7900 XT as a representative

device, the figures below show how many configurations fall within specific throughput ranges

for each of fifteen input sizes. The six distributions presented here represent the most common

52

patterns observed.

53

(a) input size: 221 (b) input size: 226

(c) input size: 229 (d) input size: 223

(e) input size: 228 (f) input size: 224

Figure 5.6: Subset of AMD XT 7900’s throughput density distributions plots.

54

Calculating Throughput Density Bin Sizes Before we get into the details, to calculate through-

put density bin size we use the Shimazaki Shinomoto function which tries to choose the best

number of bins k by minimizing a cost function that balances bias and variance. It’s great for

irregular, skewed, or multi-peaked (multimodal) data such as these configuration density plots

[52].

Interpreting Throughput Density Plots These plots illustrate where the majority of config-

urations exist. Plots 1, 2, 4 are mostly normally distributed with the majority of performances

being mediocre, however plots 2 and 4 are especially sparse in the high performance regions.

Plot 3 contains mostly good configurations, with some falling into the moderate performance

range. Plot 5 is characterized by a large number of both very poor and very good configura-

tions, while plot 6 is dominated by mostly poor-performing configurations. A device can have

roughly 3,500 different parameter configurations, with over 200 applicable to any given input

size. Using a systematic framework to explore these variable spaces speeds up development and

effectively enumerates options. If the goal is purely to create the most performant algorithm, an

input-aware scan implementation will achieve that. However, in environments with memory or

processing constraints, what are the practical value of these insights?

5.5 Leveraging Per-Input Tuning in Resource-Limited Settings

In a realistic deployment, it may not be practical to use an input-aware kernel or

to store dozens of specialized variants. For example, in an embedded a setting where there’s

only space, or code complexity budget, for a single kernel. Given the variability in parameter

55

space and the fact that good configurations can be sparse or input-size dependent, the question

becomes: how do we choose the best single kernel?

Formalizing The Problem To answer this question, we start by clarifying some assumptions.

In our implementation, a kernel refers to a fixed combination of parameters including batch size,

lookback type, memory type, and block scan strategy. These parameters are hardcoded directly

into the kernel source code. By contrast, a configuration includes all kernel parameters plus the

workgroup size and the number of workgroups. Workgroup size and number of workgroups

are set in the pre-kernel boilerplate and usually vary at runtime to control the total input size of

the GPU workload. In other words, multiple configurations can exist for a single kernel, each

corresponding to different workgroup sizes and counts.

Pruning The Configuration Space For this reason the first step in our algorithm is to prune

the configurations of a kernel that are lower in throughput than another configuration at the

same input size. This way each kernel has one configuration per input size and its the best

configuration, with respect to throughput.

Finding The Kernel of Best Throughput After this step, we can construct a throughput curve

that represents the kernel’s optimal performance across the input range. To pick the best per-

forming kernel among our options, the most straightforward approach is to look for the kernel

line that maximizes total throughput across all input sizes. We do this by summing throughput

values. Since we only include input sizes that have results for every kernel, averaging this sum

isn’t necessary. We filter kernels that don’t have a configuration at every input size because if

56

we didn’t we’d end up unfairly favoring kernels missing from low-throughput regions even if

we averaged the sum after. This is because the number of input sizes is relatively small and

the throughput range is wide enough that an average would result in a skewed kernel score.

We also considered interpolating data that fit the distribution, but that could add noise without

giving us much real insight. In practice, we care most about larger input sizes anyway, those

that get closest to saturating memory bandwidth, so this approach ends up being effective for

our purposes.

Aside: Why Kernel Selection Isn’t Redundant with ICS One might ask: if we still have to

tune by workgroup size and workgroup count, how is this different from ICS tuning, i.e. fully

exhaustive tuning? The key distinction lies in implementation complexity. To fully support

an ICS, one must either dispatch from a large set of specialized kernels, incurring significant

memory overhead, or embed extensive conditional logic within a single GPU kernel, which is

notoriously difficult to do efficiently. By contrast, selecting a single kernel and tuning only the

workgroup size and count pushes the variability into the pre-kernel boilerplate, where condi-

tional logic is simpler and does not impact performance nearly as severely.

57

Figure 5.7: AMD XT 7900 best overall parameters vs. best single kernel that maximizes the

sum of the throughputs at every input size — Throughput in GB/s.

Maximizing Throughput: AMD The blue dotted line represents the highest total throughput

total out of every kernel compared to every other kernel. This strategy is effective however we

observe significant drops in throughput at 224, 226 and 228 and 229 elements.

58

Figure 5.8: Nvidia RTX 4070 best overall parameters vs. best single kernel that maximizes the

sum of the throughputs (GB/s) at every input size.

Maximizing Throughput: Nvidia For Nvidia there are mostly good options except that we

observe a large drop at 223 and minor fall off at input sizes greater than 226. We can attempt to

smooth out these differences by penalizing the space between the lines rather than maximizing

throughput directly. Lets minimize the area between the ideal line and our kernel line. Min-

imizing this area better describes our goal anyway. Additionally, since the graph is discrete,

minimizing the sum between each datapoint is equivalent to minimizing the area between two

curves. As a side, AMD devices’ starting input size is higher because their minimum subgroup

size is twice as large as Nvidia’s causing there to be less overall kernels.

59

(a) AMD XT 7900 vs. kernel that minimizes area between curves — Throughput in

GB/s.

(b) Nvidia RTX 4070 vs. kernel that minimizes area between curves — Throughput

in GB/s.

60

Impact of the Absolute Distance Metric For both plots we minimize the absolute distance.

Unfortunately, this doesn’t have any further effect compared to maximizing the sum. To further

increase regularization and penalize the distance between points we employ squared distance as

our metric to amplify large differences.

61

(a) AMD XT 7900 vs. kernel that minimizes squared distance between points —

Throughput in GB/s.

(b) Nvidia RTX 4070 vs. kernel that minimizes squared distance between points —

Throughput in GB/s.

62

Impact of the Squared Distance Metric On Nvidia, there is no meaningful difference be-

tween minimizing the absolute sum and the squared sum when selecting a best-on-average

kernel. However, on AMD, input sizes 221, 224, and 226 show improved performance when

minimizing the squared difference rather than the absolute one. At 222 and 223, small perfor-

mance drops are observed when using the squared-distance-optimized kernel compared to the

ideal configuration. Interestingly, both best-on-average kernels use Parallelized Lookback and

SIMD Raking, but differ in other parameters: the squared-sum kernel increases the batch size

from 4 to 8 elements and switches the data type from vec4 to vec2.

Divergence Between Best Kernel and ICS at Large Input Sizes One of the clearest areas

where the best kernels diverge from the ICS is in the large input size regime on both AMD and

Nvidia. In the ICS, we observe a noticeable shift in parameters trends after medium input sizes,

where the throughput “mountain” turns into a dip. Specifically, the lookback strategy changes

from Parallelized Decoupled Lookback to Sequential Decoupled Lookback.

Cache-Aware Behavior in Parallelized Lookback This trend likely stems from cache be-

havior. At smaller input sizes, when the block descriptors still fit in cache, subgroup threads

in Parallelized Decoupled Lookback can benefit from spatial locality. When one thread loads a

cache line containing adjacent block descriptors, other threads in the subgroup, who are loading

adjacent blocks, can reuse that data, leading to just a single actual global memory access per

subgroup Lookback and scan for majority of lookbacks.

63

Global Memory Bottlenecks Undermine Parallelism However, as input size grows and sat-

urates the cache, this locality advantage disappears. Each subgroup thread must load a new

cache line from global memory, and these lines are constantly evicted. This eliminates the

cache reuse benefit and subjects every thread to the high latency of global memory.

Why Sequential Lookback Outperforms in the Memory-Bound Regime At this point,

Sequential Decoupled Lookback becomes competitive. Although threads perform lookbacks

serially in the Sequential Decoupled strategy, the high latency of global memory accesses ef-

fectively hides the cost of serial computation. In practice, both strategies end up loading block

descriptors in a mostly serialized fashion due to memory latency, so the advantage of parallel

arithmetic is diminished. Worse, in Parallelized Lookback, all subgroup threads must acquire

a READY status flag before proceeding with computation. If even a single thread encounters an

UNREADY flag, the remaining threads, up to subgroup_size - 1 of them, may have already is-

sued a costly global memory load, only to discard the reduction without doing any useful work.

By contrast, Sequential Lookback issues only one memory load at a time, at most one wasted

access per iteration, making it more efficient under memory-bound conditions.

Other Distance Metrics We also experimented with cosine and Chebyshev distance metrics

to address Nvidia’s throughput dip at 223. However, these alternatives tended to over-regularize

the kernel, leading to degraded performance, especially on the RTX 4070, which showed little

responsiveness even to the squared-distance metric.

64

(a) AMD XT 7900 vs. kernel that minimizes Chebyshev and cosine distance between

points.

(b) Nvidia RTX 4070 vs. kernel that minimizes Chebyshev and cosine distance be-

tween points.

65

To reiterate our findings. Per input size tuning can help with more than just high

performance kernels but can be helpful in specialized scenarios like best-on-average kernels.

5.6 ICS for Multiple Devices

Per input size tuning does not carry to other devices.

Figure 5.12: Benchmarked on the Nvidia RTX 4070: The best RTX 4070 parameters vs. The

best XT 7900 parameters — Throughput in GB/s.

This figure compares the ideal configuration set (ICS), the best per-input-size param-

eter combinations found via exhaustive tuning, of both the AMD RX 7900 XT and the Nvidia

RTX 4070. To highlight the lack of performance portability, all throughput measurements are

taken on the RTX 4070. As expected, the ICS tuned for AMD performs poorly on Nvidia

66

hardware, despite being tuned for input size. This illustrates a key concept, that configurations

optimized for one architecture do not necessarily transfer to another. Given this mismatch, we

ask: is it possible to construct an ICS that performs well across both devices?

Initial Approach: Highest Shared Throughput To identify a shared ICS across devices, we

compute the configuration that achieves the highest average throughput at each input size. Since

raw throughput varies significantly between devices, we first normalize the throughput values

(between 0 and 1) before averaging. This ensures that both devices contribute equally to the

selection process, improving fairness.

Figure 5.13: Plots the shared ICS for both devices (dotted line), using averaging, against device

local ICSs on the AMD XT 7900 and the Nvidia RTX 4070 — Throughput in GB/s

The dotted lines are the performances of the shared configs. This works alright some

averages are better at certain inputs and worse at others. There are a significant amount of dips

67

for the Nvidia device, so lets try to prune these dips by choosing by choosing the configuration

that has the maximum throughput at that input size on the two devices.

Figure 5.14: Plots the shared ICS for both devices (dotted line), using max, against device local

ICSs on the AMD XT 7900 and the Nvidia RTX 4070

Choosing Shared Configurations by Maximizing Throughput This is pretty bad and seems

to prefer Nvidia over AMD now. We really want to minimize difference between these values to

compute a fair shared ICS. Instead of selecting the configuration with the highest mean through-

put alone, let’s introduce a penalty based on variance: we subtract the standard deviation across

devices from the mean. This adjusted score favors configurations that perform consistently

across devices, reducing bias toward one architecture and promoting fairness in the shared ICS.

68

Figure 5.15: Same plot using averaging with variance penalty — Throughput in GB/s

Choosing Shared Configurations by Relative Rank This is entirely indifferent from the

normal mean so we continue on to our next strategy. Our second approach was spawned out of

a realization that normalizing throughputs between to zero and one reduces scale intolerance but

only if these devices follow the same distribution which they do not. Normalization improves

scale intolerance for averaging but doesn’t solve the problem of have a totally different distribu-

tion. Averaging, i.e., splitting the gap between configuration performances will not work here.

What we really want is for datapoints to be best good relative to their own best lines, this is the

actual cieling of their performance. We need a metric that is sensitive to its own score within

the device. This sounds like we want the want the best ranked configs within a given device.

Ranking Metrics There exist a few metrics for finding the best combined rank across the

device. The first one we use is minimizing the sum of their ranks. Summing ranks results in

69

a simple combined “score” reflecting how well a configuration performs relative to others on

both devices simultaneously. The lower the sum, the better the config ranks overall. This favors

configurations that are not just good on one device, but also reasonably good on the other. We

also including the minimizing the product of ranks which penalizes rank differences even more

than minimizing the sum.

(a) Minimizing Sum of Ranks — Throughput in GB/s.

(b) Minimizing Product of Ranks — Throughput in GB/s.

70

Rank Based Metric Limitations This approach yields smoother results, its clear we are on

the right path, but rank-based selection remains sensitive to threshold effects. For example, at

input sizes 228 and 219, minimizing the sum of ranks makes a slightly fairer choice (see dotted

lines), but at 219, minimizing the product of ranks yields a better decision. This inconsistency

stems from a key limitation: rank-based metrics are insensitive to throughput magnitudes. The

configuration density plots confirm this issue. At 219, AMD’s best configuration achieves 110

GB/s and Nvidia’s hits 200 GB/s, but both fall within sparsely populated throughput regions.

71

(a) Dip in density at 200 GB/s.

(b) Dip in density at 110 GB/s

72

Why Ranking Fails in Sparse Configuration Regions In such sparse regions, adjacent ranks

can differ by large absolute throughput margins, making rank a poor proxy for performance

similarity. Ranking tells us only the order, not the cost of deviation. The product of ranks

method punishes large rank disparities, but it is overly sensitive and still blind to how much

throughput is lost between ranks. To improve fairness, we need a metric that accounts for both

relative order and throughput distance.

The Distance Approach Instead of ranking we need something that is sensitive to magnitude.

Instead of ranking configurations we can compute the distance between each datapoint and its

device ideal line like we did in the first section, then sum the two distances which will naturally

rank the configurations while preserving their relative magnitudes. Ranking this way solves the

threshold problem since ranks are not contiguous but spread by the strength of their difference.

Similar to product of ranks we can use the squared distance metric to penalize larger gaps.

73

(a) Minimizing Distance — Throughput in GB/s.

(b) Minimizing Squared Distance — Throughput in GB/s.

74

This helps with that process but might be too strong. At 224 product of sums makes

the shared lines more even but at 226 overly punishes nvidia. We can tune this slightly and

instead of squaring the distance use 1.25 as the exponent.

Figure 5.19: Minimizing Distance to the 1.25 power — Throughput in GB/s.

This set prevents he over punishment at 226 while still smoothing 224. Although any

of these three metrics result generate good results.

5.7 Final Problem: Generate the Best Kernel for Multiple Devices

Now that we have found a method for comparing devices lets try to solve a more

difficult and traditional problem in performance portability. Finding the kernel across multiple

devices. This is similar to the problem from section 1 but now with a focus on portability not

just single device performance. We have compared kernels before within a single device. Now

we want to compare kernel configurations across devices. We now understand the metrics to

75

both compare kernels within a device and to compare performance of configurations across de-

vices. Lets combine these tactics to find the best standalone kernel across multiple devices. For

starters, we don’t want to compare these kernels against the best device local kernel because this

may not be indicative of the best global kernel, its possible there exists a better kernel across the

devices where one input size is higher than the device local kernel though the device local kernel

is still on average better locally. Its a safety precaution to choose the actual ceiling so the dis-

tance metrics dont get confused when a value exceeds the ceiling. Below, we combine insights

from both standalone kernel tuning and cross-device comparisons to develop an algorithm that

produces the fairest and most performant standalone kernel for optimized performance across

devices.

1. Group the data by kernel ID. Each kernel is identified by a tuple of configuration pa-

rameters: [batch size, local scan, lookback type, data type].

2. Compute best throughput per input size and device. For each kernel and each input

size, find the maximum throughput achieved on each device (sweeping across different

workgroup sizes and numbers of workgroups dispatched). This results in a throughput

“line” per kernel per device.

3. Compute distance from the ideal line. For each kernel, calculate the sum of squared

differences between its throughput line and the device’s ideal line (the maximum achiev-

able throughput per input size), for both devices. These distances reflect how closely a

kernel performs to the best possible.

4. Aggregate distances across devices. Add the summed squared distances from both de-

76

vices to get a single scalar representing the overall deviation from ideal performance.

5. Select the best kernel. Identify the kernel with the smallest total deviation. This kernel

minimizes the combined performance gap across all input sizes and both target devices.

Figure 5.20: Best kernel across AMD and Nvidia — Throughput in GB/s.

This algorithm produces an exceptionally fair and performant portable kernel across

devices. Identifying a single performant kernel like this is a challenging problem, especially

valuable in scenarios where hardware varies and there are constraints on memory, compute

resources, or implementation complexity. Mobile devices, for example vary in hardware and

and operate under tighter space and resource constraints compared to other platforms. That

said, with respect to prefix sum, there appears to be a decent degree of inherent performance

portability on these devices. Further testing across a wider range of chips may uncover greater

77

variation. Still, incorporating this technique into the development process for phones and em-

bedded systems appears to be a promising strategy for portable and efficient GPU kernel design.

78

Chapter 6

Future Work

A Mountain of ”Cache” One of the most notable patterns in the throughput vs. input size

plots across all GPUs is the characteristic peak and subsequent dip at medium input sizes.

ScanBox outperforms CUB at small input sizes but performs significantly worse at medium

sizes. We propose two potential directions for improving performance in this regime:

1. Introducing a Lookback Range: In Parallelized Decoupled Lookback, each subgroup

currently loads a single block descriptor per iteration. We hypothesize that allowing

each subgroup to acquire multiple descriptors per iteration could better utilize the GPU’s

cache. This is because a single global memory access may cache way more than 128

bytes, exceeding the total amount of data actually used by a subgroup in a single lookback

iteration. If more descriptors could be scanned per access, we could maintain the number

of true memory loads, while doing more computations.

2. Vectorizing the Block Descriptor Array: As an extension of the above idea, vectorizing

the memory layout of the block descriptor array could further enhance spatial locality and

79

caching efficiency. This would introduce two new tuning parameters: a lookback batch

size and a lookback data type. These parameters would control how many descriptors are

processed at once and in what format (e.g., vec2 or vec4), potentially improving memory

throughput.

Both ideas target the medium input size regime. However, these techniques are likely

to underperform at large input sizes, where cache locality breaks down. In those cases, fetching

multiple block descriptors would result in redundant memory accesses that are discarded if even

a single descriptor is not ready, reproducing the same bottlenecks seen in standard Parallelized

Decoupled Lookback.

80

Chapter 7

Conclusion

In this work, we presented ScanBox, a parameterized prefix-scan implementation that

approaches peak memory bandwidth across AMD and Nvidia GPUs, rivaling vendor-optimized

libraries like CUB. By tuning over six core implementation decisions, we demonstrated that

per-input-size tuning not only achieves high performance but also reveals deeper architectural

insights across devices. Our results suggest that this tuning methodology can produce fair,

portable kernels suitable for hardware-constrained environments like mobile and embedded sys-

tems. While performance portability was notably strong on the platforms we tested, this does

not diminish the value of our approach. Our strategies consistently produced high-performing

standalone kernels, reinforcing per-input-size tuning and our key implementation decisions as

powerful tools for maximizing efficiency in prefix-scan and GPU kernel design more broadly.

81

Bibliography

[1] Advanced Micro Devices, Inc. HIP Programming Guide, Version 6.4.43483. AMD ROCm
Documentation, 2024. Section: Hardware Implementation.

[2] Paul Bauman, Noel Chalmers, Nick Curtis, Chip Freitag, Joe Greathouse, Nicholas
Malaya, Damon McDougall, Scott Moe, René van Oostrum, and Noah Wolfe. Intro-
duction to amd gpu programming with hip. Presentation, 2019. Available from AMD
Developer Resources.

[3] Nathan Benaich and the Air Street Capital team. 91Accessed: 2025-06-12.

[4] Guy E. Blelloch. Prefix sums and their applications. Technical Report CMU-CS-90-190,
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1990.

[5] Guy E. Blelloch. Vector models for data-parallel computing. Technical Report CMU-CS-
93-100, Carnegie Mellon University, 1993.

[6] Guy E. Blelloch, Siddhartha Chatterjee, and Marco Zagha. Solving linear recurrences with
loop raking. Technical Report CMU-CS-93-173, School of Computer Science, Carnegie
Mellon University, Pittsburgh, PA, 1993.

[7] Brent and Kung. A regular layout for parallel adders, 1982.

[8] Richard P. Brent. The parallel evaluation of general arithmetic expressions. J. ACM,
21(2):201–206, April 1974.

[9] Sunbal Cheema and Gul Khan. Gpu auto-tuning framework for optimal performance and
power consumption. In Proceedings of the 15th Workshop on General Purpose Processing
Using GPU, GPGPU ’23, page 1–6, New York, NY, USA, 2023. Association for Comput-
ing Machinery.

[10] Hernán Ponce de León et al. Dat3m: A verification framework for weak memory mod-
els. https://github.com/hernanponcedeleon/Dat3M, 2025. GitHub repository, Ac-
cessed: 2025-06-16.

[11] Peng Du, Rick Weber, Piotr Luszczek, Stanimire Tomov, Gregory Peterson, and Jack Don-
garra. From cuda to opencl: Towards a performance-portable solution for multi-platform
gpu programming. Parallel Computing, 38(8):391–407, 2012. APPLICATION ACCEL-
ERATORS IN HPC.

82

[12] M.J. Flynn. Very high-speed computing systems. Proceedings of the IEEE, 54(12):1901–
1909, 1966.

[13] Matt Godbolt. Compiler explorer. https://godbolt.org, 2025. Accessed: 2025-06-16.

[14] Google Chrome Developers. New in webgpu 128, Apr 2025. Accessed: 2025-04-16.

[15] Sayan Goswami, Kisung Lee, Shayan Shams, and Seung-Jong Park. Gpu-accelerated
large-scale genome assembly. In 2018 IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS), page 814–824. IEEE, May 2018.

[16] Spencer Green, Eric Enderton, Tim Purcell, and Aaron Lefohn. Onesweep: Faster least-
significant-digit radix sort on gpus. In Proceedings of the ACM SIGGRAPH / Eurographics
Conference on High Performance Graphics, pages 1–11. ACM, 2022.

[17] Mark Harris, Shubhabrata Sengupta, and John D. Owens. Chapter 36: Parallel prefix sum
(scan) with cuda. In Matt Pharr, editor, GPU Gems 2. Addison-Wesley, 2005. NVIDIA
GPU Gems 2.

[18] Mark Harris, Shubhabrata Sengupta, and John D. Owens. Parallel prefix sum (scan) with
cuda. In 2007 Computer Graphics International, pages 209–217, 2007.

[19] W. Daniel Hillis and Guy L. Steele. Data parallel algorithms. Communications of the
ACM, 29(12):1170–1183, 1986.

[20] Intel Corporation. oneAPI GPU Optimization Guide, Version 2023.0. Intel Developer
Documentation, 2022. Section: Sub-groups and SIMD Vectorization.

[21] Khronos Group. Vulkan 1.3.281 Specification: computeFullSubgroups Fea-
ture. https://registry.khronos.org/vulkan/specs/latest/html/vkspec.html\
#features-computeFullSubgroups, 2025. Accessed: 2025-06-16.

[22] Khronos Group. About khronos group. https://www.khronos.org/about/, n.d. Ac-
cessed: 2025-06-16.

[23] Matthew Kieber-Emmons. Efficient parallel prefix sum in metal for apple m1: Compar-
ison of optimal m1 gpu scan primitives to vectorized cpu performance, September 2021.
Medium article, Accessed: 2025-06-16.

[24] Jake Kirkham, Tyler Sorensen, Esin Tureci, and Margaret Martonosi. Foundations of em-
pirical memory consistency testing. Proc. ACM Program. Lang., 4(OOPSLA), November
2020.

[25] Peter M. Kogge and Harold S. Stone. A parallel algorithm for the efficient solution of a
general class of recurrence equations. IEEE Transactions on Computers, C-22(8):786–
793, 1973.

[26] CHPL Lab. Easyvk. https://github.com/ucsc-chpl/easyvk/, 2023.

83

[27] Jeremy Laird. Arm reportedly spooling up major new gpu architecture to take on nvidia,
Aug 2024.

[28] Reese Levine, Tianhao Guo, Mingun Cho, Alan Baker, Raph Levien, David Neto, Andrew
Quinn, and Tyler Sorensen. Mc mutants: Evaluating and improving testing for memory
consistency specifications. In Proceedings of the 28th ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, Volume 2,
ASPLOS ’23, page 473–488. ACM, January 2023.

[29] Puya Memarzia and Farshad Khunjush. An in-depth study on the performance impact of
cuda, opencl, and ptx code. Journal of Information and Computing Science, 10(2):124–
136, 2015. Received: November 30, 2014; Accepted: February 26, 2015.

[30] Duane Merrill and Michael Garland. Single-pass parallel prefix scan with decoupled look-
back. In Proceedings of the 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pages 577–586. IEEE, 2016.

[31] Duane Merrill, Michael Garland, and Andrew Grimshaw. Policy-based tuning for perfor-
mance portability and library co-optimization. In Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis (SC). IEEE
Press, 2012.

[32] Duane Merrill and Andrew Grimshaw. Parallel scan for stream architectures. Technical
report, 2009.

[33] Shin Morishima and Hiroki Matsutani. Accelerating blockchain search of full nodes using
gpus. In 2018 26th Euromicro International Conference on Parallel, Distributed and
Network-based Processing (PDP), pages 244–248, 2018.

[34] Mitchell Nelson, Zachary Sorenson, Joseph M. Myre, Jason Sawin, and David Chiu. Par-
allel acceleration of cpu and gpu range queries over large data sets. Journal of Cloud
Computing, 9(1), August 2020.

[35] NVIDIA Corporation. NVIDIA CUDA Programming Guide Version 1.0, 2007. Accessed:
2025-06-16.

[36] NVIDIA Corporation. Parallel prefix sum (scan) with cuda. https://developer.
download.nvidia.com/compute/cuda/1.1-Beta/x86_website/projects/scan/
doc/scan.pdf, 2007. NVIDIA CUDA SDK Documentation.

[37] NVIDIA Corporation. Nvidia cuda compute unified device architecture: Programming
guide. Technical Report NVR-2008-004, 2008. NVIDIA Technical Report.

[38] NVIDIA Corporation. CUDA C++ Programming Guide, Version 12.9. NVIDIA Devel-
oper Documentation, 2024. Section: Hardware Implementation.

[39] NVIDIA Corporation. CUDA C++ Programming Guide, Version 12.9. NVIDIA Devel-
oper Documentation, 2024. Section: Performance Guideliens.

84

[40] NVIDIADeveloper.

[41] John D. Owens, Mike Houston, David Luebke, Simon Green, John E. Stone, and James C.
Phillips. Gpu computing. Proceedings of the IEEE, 96(5):879–899, 2008.

[42] Roger Pearce, Maya Gokhale, and Nancy M. Amato. Dynamic graph data structures
on gpus. In 2010 IEEE International Symposium on Parallel & Distributed Processing
(IPDPS), pages 1–11, 2010.

[43] Hernán Ponce-de León, Florian Furbach, Keijo Heljanko, and Roland Meyer. Dartag-
nan: Bounded model checking for weak memory models (competition contribution). In
Tools and Algorithms for the Construction and Analysis of Systems: 26th International
Conference, TACAS 2020, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2020, Dublin, Ireland, April 25–30, 2020, Proceedings, Part
II, page 378–382, Berlin, Heidelberg, 2020. Springer-Verlag.

[44] Shrusti K. Ramani, Vaishali J. Desai, and Kruti K. Karia. Gpu - graphics processing
unit. International Journal of Innovative Research in Computer Science & Technology
(IJIRCST), 3(1):57–60, January 2015. Department of Computer Science, Saurashtra Uni-
versity, Rajkot, Gujarat.

[45] Burkhard Ringlein, Thomas Parnell, and Radu Stoica. Gpu performance portability needs
autotuning, 2025.

[46] Abill Robert. Comparative analysis of cpu vs. gpu performance in bioinformatics data
processing. EasyChair Preprint 13778, EasyChair, 2024.

[47] Karl Rupp, Peter Tillet, Florian Rudolf, Josef Weinbub, Tibor Grasser, and Ansgar Jüngel.
Performance portability study of linear algebra kernels in opencl. In Proceedings of the
International Workshop on OpenCL 2013 2014 (IWOCL ’14), pages 1–11. ACM Press,
2014.

[48] Markus R Schmidt, Anna Barcons-Simon, Claudia Rabuffo, and T Nicolai Siegel.
Smoother: on-the-fly processing of interactome data using prefix sums. Nucleic Acids
Research, 52(5):e23–e23, January 2024.

[49] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens. Chapter 39: Scan
primitives for gpu computing. In Hubert Nguyen, editor, GPU Gems 3. Addison-Wesley,
2007. NVIDIA GPU Gems 3.

[50] Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens. Scan primitives for
gpu computing. Technical report, University of California, Davis, 2007. Technical Report.

[51] Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision, 2024.

[52] Hideaki Shimazaki and Shigeru Shinomoto. A method for selecting the bin size of a time
histogram. Neural Computation, 19(6):1503–1527, June 2007.

85

[53] J. Sklansky. Conditional-sum addition logic. IRE Transactions on Electronic Computers,
EC-9(2):226–231, 1960.

[54] Marc Snir. Depth-size trade-offs for parallel prefix computation. Journal of Algorithms,
7(2):185–201, 1986.

[55] Tyler Sorensen and Alastair F. Donaldson. The hitchhiker’s guide to cross-platform opencl
application development. In Proceedings of the 4th International Workshop on OpenCL,
IWOCL ’16, page 1–12. ACM, April 2016.

[56] Tyler Sorensen and Heidy Khlaaf. Leftoverlocals: Listening to llm responses through
leaked gpu local memory, 2024.

[57] Huayou Su, Nan Wu, Mei Wen, Chunyuan Zhang, and Xing Cai. On the gpu-cpu perfor-
mance portability of opencl for 3d stencil computations. In 2013 International Conference
on Parallel and Distributed Systems, page 78–85. IEEE, December 2013.

[58] The Verge. Amd radeon rx 9070 series launches with rdna 4 and fsr 4 at ces 2025, 2025.
Accessed: 2025-06-12.

[59] Peter Thoman, Klaus Kofler, Heiko Studt, John Thomson, and Thomas Fahringer. Au-
tomatic opencl device characterization: Guiding optimized kernel design. In Emmanuel
Jeannot, Raymond Namyst, and Jean Roman, editors, Euro-Par 2011 Parallel Processing,
pages 438–452, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[60] Jan V. Mcs 572 lecture 16 notes, 2025. Accessed: 2025-06-16.

[61] Amin Vahdat. Ironwood: The first google tpu for the age of inference, Apr 2025.

[62] World Wide Web Consortium (W3C). W3c mission: Leading the web to its full potential.
https://www.w3.org/mission/, n.d. Accessed: 2025-06-16.

[63] Shengen Yan, Guoping Long, and Yunquan Zhang. Streamscan: fast scan algorithms
for gpus without global barrier synchronization. In Proceedings of the 18th ACM SIG-
PLAN symposium on Principles and practice of parallel programming, PPoPP ’13, page
229–238. ACM, February 2013.

[64] Haixiao Zhang, Yu Wang, Mingkun Li, Qinghua He, and Tong Zhang. Sugar-bi: A gpu-
accelerated tool for bisulfite sequencing data analysis. Nucleic Acids Research, 52(5):e23–
e23, 2024.

[65] Yao Zhang, Mark Sinclair, and Andrew A. Chien. Improving performance portability in
opencl programs. In Julian Martin Kunkel, Thomas Ludwig, and Hans Werner Meuer,
editors, Supercomputing, pages 136–150, Berlin, Heidelberg, 2013. Springer Berlin Hei-
delberg.

86

